A Unified Derivation of Operational Matrices for Integration in Systems Analysis
نویسندگان
چکیده
Using the operational matrix of an orthogonal function to perform integration for solving, identifying and optimizing a linear dynamic system has several advantages: (1) the method is computer oriented, thus solving higher order differential equation becomes a matter of dimension increasing; (2) the solution is a multiresolution type; (3) the answer is convergent, even the size of increment is very large. The traditional methods of deriving the operational matrix is much involved and not unified, this paper presents a new unified approach to deriving the operational matrices of orthogonal functions. We apply it first to the derivation of the operational matrices of the square wave group which consist of (i) the block pulse function, (ii) the Walsh function and (iii) the Haar wavelet function, then to the sinusoidal group which includes (i) the discrete Fourier transform, (ii) the discrete cosine transform and (iii) the discrete Hartley transform. Finally, we use the operational matrices to solve a linear differential equation for demonstrating its usefulness.
منابع مشابه
Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملA Common Weight Multi-criteria Decision analysis-data Envelopment Analysis Approach with Assurance Region for Weight Derivation from Pairwise Comparison Matrices
Deriving weights from a pairwise comparison matrix (PCM) is a subject for which a wide range of methods have ever been presented. This paper proposes a common weight multi criteria decision analysis-data envelopment analysis (MCDA-DEA) approach with assurance region for weight derivation from a PCM. The proposed model has several merits over the competing approaches and removes the drawbacks of...
متن کاملNumerical method for solving optimal control problem of the linear differential systems with inequality constraints
In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...
متن کامل